EE224-

Q1) A continuous time periodic signal $\mathrm{x}(\mathrm{t})$ is real valued and has a fundamental period $\mathrm{T}=8$. The nonzero Fourier series coefficients for $x(t)$ are specified as

$$
\mathrm{a}_{1}=\mathrm{a}_{-1}^{*}=\mathrm{j}, \quad \mathrm{a}_{5}=\mathrm{a}_{-5}=2 .
$$

Express $x(t)$ in the form $x(t)=\sum A_{k} \cos \left(\omega_{k} t+\phi_{k}\right)$.
Q2)Let $x(t)$ be a signal whose Fourier transform is

$$
\mathrm{X}(\mathrm{j} \omega)=\delta(\omega)+\delta(\omega-\pi)+\delta(\omega-5)
$$

and let

$$
\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-2) .
$$

(a)Is $x(t)$ periodic?
(b)Is $\mathrm{x}(\mathrm{t}) * \mathrm{~h}(\mathrm{t})$ periodic?

SOLUTIONS

S1)Using Fourier series synthesis

$$
\begin{align*}
& x(t)=\mathrm{a}_{1} \mathrm{e}^{\mathrm{j}(2 \pi / \mathrm{T}) \mathrm{t}}+\mathrm{a}_{-1} \mathrm{e}^{-\mathrm{j}(2 \pi / \mathrm{T}) \mathrm{t}}+\mathrm{a}_{5} \mathrm{e}^{\mathrm{j} 5(2 \pi / \mathrm{T}) \mathrm{t}}+\mathrm{a}_{-5} \mathrm{e}^{-\mathrm{j} 5(2 \pi / \mathrm{T}) \mathrm{t}} \tag{7points}\\
& \mathrm{x}(\mathrm{t})=\mathrm{je} \mathrm{e}^{\mathrm{j}(2 \pi / 8) \mathrm{t}}-\mathrm{je} \\
& \mathrm{x}(\mathrm{t})=-2 \sin \left(\frac{\pi \mathrm{t}}{4}\right)+4 \cos \left(\frac{5 \pi \mathrm{t}) \mathrm{t}}{4}+2 \mathrm{e}^{\mathrm{j} 5(2 \pi / 8) \mathrm{t}}+2 \mathrm{e}^{-\mathrm{j} 5(2 \pi / 8) \mathrm{t}}\right. \tag{6points}\\
& \mathrm{x}(\mathrm{t})=-2 \cos \left(\frac{\pi \mathrm{t}}{4}-\frac{\pi}{2}\right)+4 \cos \left(\frac{5 \pi \mathrm{t}}{4}\right)
\end{align*}
$$

S2)Taking the inverse Fourier transform of $\mathrm{X}(\mathrm{j} \omega)$, we obtain

$$
\begin{equation*}
x(t)=\frac{1}{2 \pi}+\frac{1}{2 \pi} e^{j \pi t}+\frac{1}{2 \pi} e^{j 5 \pi t} \tag{5points}
\end{equation*}
$$

(a)The signal $x(t)$ is a constant summed with two complex exponentials whose fundamental frequency are $2 \pi / 5 \mathrm{rad} / \mathrm{sec}$ and $2 \mathrm{rad} / \mathrm{sec}$. These two complex exponentials are not harmonically related. Therefore, the signal is NOT PERIODIC. (4 points)
(b)Consider the signal $\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t}) * \mathrm{~h}(\mathrm{t})$. From the convolution property, we know that $\mathrm{Y}(\mathrm{j} \omega)=\mathrm{X}(\mathrm{j} \omega) \cdot \mathrm{H}(\mathrm{j} \omega)$. Also,

$$
\begin{equation*}
\mathrm{H}(\mathrm{j} \omega)=\mathrm{e}^{-\mathrm{j} \omega} \frac{2 \sin \omega}{\omega} \tag{4points}
\end{equation*}
$$

The function $\mathrm{H}(\mathrm{j} \omega)$ is zero when $\omega=\mathrm{k} \pi$, where k is a nonzero integer. Therefore,

$$
\begin{equation*}
\mathrm{Y}(\mathrm{j} \omega)=\mathrm{X}(\mathrm{j} \omega) \cdot \mathrm{H}(\mathrm{j} \omega)=\delta(\omega)+\delta(\omega-5) \tag{4points}
\end{equation*}
$$

This gives
$y(t)=\frac{1}{2 \pi}+\frac{1}{2 \pi} e^{j 5 \pi t}$
$\mathrm{Y}(\mathrm{t})$ is a complex exponential summed with a constant. We know that a complex exponential is periodic. Adding a constant to a complex exponential does not affect its periodicity. $\mathrm{Y}(\mathrm{t})$ will be a signal with a fundamental frequency of $2 \pi / 5 \mathrm{rad} / \mathrm{sec}$.
(4 points)

