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Q1) A continuous time periodic signal x(t) is real valued and has a fundamental period T=8. 

The nonzero Fourier series coefficients for x(t) are specified as 
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Express x(t) in the form   kkk tcosA)t(x . 

Q2)Let x(t) be a signal whose Fourier transform is 
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and let   
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(a)Is x(t) periodic? 

(b)Is x(t)*h(t) periodic? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SOLUTIONS 

 

 

S1)Using Fourier series synthesis 
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S2)Taking the inverse Fourier transform of X(jω), we obtain 
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(a)The signal x(t) is a constant summed with two complex exponentials whose fundamental 

frequency are 2π/5 rad/sec and 2 rad/sec. These two complex exponentials are not 

harmonically related. Therefore, the signal is NOT PERIODIC. (4 points)  

(b)Consider the signal y(t)=x(t)*h(t). From the convolution property, we know that 

      jH.jXjY . Also, 
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The function H(jω) is zero when ω=kπ, where k is a nonzero integer. Therefore, 
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This gives 

 

e
2

1

2

1
)t(y t5j 





        (4 points) 

 

Y(t) is a complex exponential summed with a constant. We know that a complex exponential 

is periodic. Adding a constant to a complex exponential does not affect its periodicity. Y(t) 

will be a signal with a fundamental frequency of 2π/5 rad/sec. (4 points) 


