EE 224 Semester Exam- Solution

Q1) (20pts) Express the sinusoidal signal shown to below as a Fourier series in complex exponential form.

Q2) (30pts) Consider the following system.

$$x(t) \xrightarrow{x_p(t)} \underbrace{\text{Impulse}}_{\substack{\text{to} \\ \text{Sequence}}} \longrightarrow x[n]$$

$$p(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

The Fourier transform of x(t), x_p(t) and x[n] are denoted respectively X(j ω), X_p(j ω) and X(e^{j Ω}). If X(j ω) is as shown below and T=0,5.10⁻³ sec, provide labeled sketches of X_p(j ω) and X(e^{j Ω}).

S1) The signal is a cosinus plus a dc offset, so there are only 3 terms in the series. We have $T=10^{-3}$ sec.

$$x(t) = 1 + \cos\left(\frac{2\pi t}{T}\right) = 1 + \frac{1}{2}e^{\frac{j2\pi t}{T}} + \frac{1}{2}e^{\frac{-j2\pi t}{T}}$$

This makes $X_{-1}=1/2$, $X_1=1/2$ and $X_0=1$ (dc offset) (10pts)

And the series becomes

$$\mathbf{x}(t) = 1 + \frac{1}{2}\mathbf{e}^{\frac{j2\pi t}{T}} + \frac{1}{2}\mathbf{e}^{\frac{-j2\pi t}{T}} = 1 + \frac{1}{2}\mathbf{e}^{-j2\pi 1000t} + \frac{1}{2}\mathbf{e}^{j2\pi 1000t}$$
(10 pts)

S2) (10pts)

 $X(e^{j\Omega})$ is just $X_p(j\omega)$ with a scaling on the frequency axis by T=0,5...10⁻³.

Q3) (30pts) Let the Fourier transform of discrete time signal is given as $X(\omega) = 1 + 2e^{-j\omega} + 2e^{-j2\omega}$

- a) Calculate and plot the magnitude and phase of $X(\omega)$.
- b) By inspecting the figures, is the time domain sequence periodic? Why?
- c) Find the time domain sequence using the following table and properties of the discrete time Fourier transform.

Time Domain x[n]	Frequency Domain X(ω)
$\delta[n]$	1
u[n]	$\frac{1}{1 - e^{-j\omega}}$
e ^{jn}	$2\pi\delta(\omega)$

Q4) (20pts) Assume that you have a discrete data set collected from real time environment.

- a) What would you do to in order to get information about underlying periodicities?
- b) What would you do if the number of data is not power of 2?
- c) Why do we want that the number of data is power of 2?
- d) How can you improve the resolution to get more information?
- e) If there exist a large peak at zero frequency, what does this mean? How can it be removed?
- f) What is the meaning of the peaks in the obtained spectrum?
- g) Assume that the data is taken with a sample period of 1 minute and the number of data is 1024, the peak resides in indice m=240. Calculate the frequency and period associated with that peak.