# Dokuz Eylül Üniversity <br> Department of Electrical and Electronics Engineering <br> EE 5150-Transform Theory and Its Applications <br> <br> Midterm Exam, Fall 2009 <br> <br> Midterm Exam, Fall 2009 <br> November 23th, 2009, 9:30-12:15 AM 

Instructor: Dr. Gülden Köktürk

Q1) Determine the impulse response (3p.) and the step response of the following causal system (3p.). Are the system stable? (3p.)

$$
y(n)=\frac{3}{4} y(n-1)-\frac{1}{8} y(n-2)+x(n)
$$

$Y(z)=\frac{X(z)}{1-\frac{3}{4} z^{-1}+\frac{1}{8} z^{-2}}$
Impulse response: $X(z)=1$
$Y(z)=\frac{2}{1-\frac{1}{2} z^{-1}}-\frac{1}{1-\frac{1}{4} z^{-1}}$
$h(n)=\left[2\left(\frac{1}{2}\right)^{\mathrm{n}}-\left(\frac{1}{4}\right)^{\mathrm{n}}\right] \mathrm{u}(\mathrm{n})$
Step response: $X(z)=\frac{1}{1-z^{-1}}$
$Y(z)=\frac{8 / 2}{1-z^{-1}}-\frac{2}{1-\frac{1}{2} z^{-1}}+\frac{1 / 3}{1-\frac{1}{4} z^{-1}}$
$y(n)=\left[\frac{8}{3}-2\left(\frac{1}{2}\right)^{n}-\frac{1}{3}\left(\frac{1}{4}\right)^{n}\right] u(n)$
Since the poles of $\mathrm{H}(\mathrm{z})$ are inside the unit circle, the system is stable (poles at $\mathrm{z}=\frac{1}{2}, \frac{1}{4}$ )

Q2) If $X(z)$ is the $z$ transform of $x(n)$, show that ( 8 p .)

$$
\mathrm{Z}\left\{\mathrm{x}^{*}(\mathrm{n})\right\}=\mathrm{X}^{*}\left(\mathrm{z}^{*}\right)
$$

$$
\sum_{n=-\infty}^{+\infty} x^{*}(n) z^{-n}=\sum_{n=-\infty}^{+\infty}\left[x(n)\left(z^{*}\right)^{-n}\right]^{*}=X^{*}\left(z^{*}\right)
$$

Q3) Determine thr causal signal $\mathrm{x}(\mathrm{n})$ if its z transform, $\mathrm{X}(\mathrm{z})$, is given by (8p.)

$$
\mathrm{X}(\mathrm{z})=\frac{1+3 \mathrm{z}^{-1}}{1+3 \mathrm{z}^{-1}+2 \mathrm{z}^{-2}}
$$

$X(z)=\frac{A}{1-z^{-1}}+\frac{B}{1-2 z^{-1}}$
Hence; $A=2, B=-1$.
$x(n)=\left[2(-1)^{n}-(-2)^{n}\right] u(n)$

Q4) Let $x(n)$ be a sequence with $z$ transform $X(z)$. Determine, in terms of $X(z)$, the $z$ transform of the following signal. (8p.)

$$
\begin{aligned}
& x_{1}(n)=x(2 n) \\
& X_{1}(z)=\sum_{n=-\infty}^{+\infty} x_{1}(n) z^{-n}=\sum_{n=-\infty}^{+\infty} x_{1}(2 n) z^{-n}=\sum_{k=-\infty}^{+\infty} x(k) z^{-k / 2} \\
& =\sum_{k=-\infty}^{+\infty}\left[\frac{x(k)+(-1)^{k} x(k)}{2}\right] z^{-k / 2} ; k \text { even } \\
& =\frac{1}{2} \sum_{k=-\infty}^{+\infty} x(k) z^{-k / 2}+\frac{1}{2} \sum_{k=-\infty}^{+\infty} x(k)\left(-z^{1 / 2}\right)^{-k} \\
& =\frac{1}{2}[X(\sqrt{z})+X(-\sqrt{z})]
\end{aligned}
$$

Q5) Determine the signal $\mathrm{x}(\mathrm{n})$ if its Fourier transform is a given as ( 6 p .)

$$
\begin{aligned}
& x(n)=\frac{1}{2 \pi}\left[\int_{\frac{8 \pi}{10}}^{\frac{9 \pi}{10}} e^{j \omega n} d \omega+\int_{\frac{-9 \pi}{10}}^{\frac{-8 \pi}{10}} \mathrm{e}^{j \omega n} d \omega+2 \int_{\frac{9 \pi}{10}}^{\pi} \mathrm{e}^{j \omega n} d \omega+2 \int_{-\pi}^{\frac{-9 \pi}{10}} e^{j \omega n} d \omega\right] \\
& =\frac{1}{2 \pi}\left[\frac{1}{j n}\left(e^{\frac{i n 9 \pi}{10}}-e^{\frac{-j n 9 \pi}{10}}-e^{\frac{i n 8 \pi}{10}}+e^{\frac{-j n 8 \pi}{10}}\right)+\frac{2}{j n}\left(-e^{\frac{j n 9 \pi}{10}}+e^{\frac{-j n 9 \pi}{10}}+e^{\mathrm{jn} \pi}-e^{-j n \pi}\right)\right] \\
& =\frac{1}{n \pi}\left[\sin (\pi n)-\sin \left(\frac{8 \pi n}{10}\right)-\sin \left(\frac{9 \pi n}{10}\right)\right]
\end{aligned}
$$

$=-\frac{1}{\mathrm{n} \pi}\left[\sin \left(\frac{4 \pi n}{5}\right)+\sin \left(\frac{9 \pi n}{10}\right)\right]$

Q6) Consider a signal $x(n)=\{-1,2, \underbrace{3}_{\uparrow}, 2,-1\}$ with Fourier transform $X(\omega)$. Compute the following quantities, without explicity computing $X(\omega)$;
(a) $X(0),(2 p$.
(b) Angle $\{\mathrm{X}(\omega)\}$, (2p.)
(c) $X(\pi),(2 p$.
(d)
$\int_{-\pi}^{\pi}|X(\omega)|^{2} d \omega,(2 p$.$) \quad (e) \int_{-\pi}^{\pi} X(\omega) d \omega$ (2p.)
(a) $x(0)=\sum_{n} x(n)=-1$
(b) angle $[X(\omega)]=\pi$ for all $\omega$
(c) $x(\pi)=\sum_{n=-\infty}^{+\infty} x(n) e^{-j n \pi}=\sum_{n}(-1)^{n} x(n)=-3-4-2=-9$
(d) $\int_{-\pi}^{\pi}|X(\omega)|^{2} d \omega=2 \omega \sum_{n}|x(n)|^{2}=(2 \pi) 19=38 \pi$
(e) $X(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) d \omega$

Then, $\int_{-\pi}^{\pi} X(\omega) d \omega=2 \pi X(0)=-6 \pi$

Q7) Let $x_{a}(t)$ be an analog signal with bandwith $B=3 \mathrm{kHz}$. We wish to use $N=L^{m}$-point DFT to compute the spectrum of the signal with a resolution less than or equal to 50 Hz . Determine the minimum sampling rate ( $2 \mathbf{p}$. ), the minimum number of required samples ( $2 \mathbf{p}$.) and the minimum length of the analog signal record (2p.).
$F_{1}=F_{N}=2 B=6000$ samples $/ \mathrm{sec}$.
$\mathrm{T}=1 / \mathrm{F}_{\mathrm{s}}=1 / 6000$
$\frac{1}{\mathrm{LT}} \leq 50 \Rightarrow \mathrm{~L} \geq \frac{1}{50 \mathrm{~T}}=\frac{6000}{50}=120$ samples
$\mathrm{LT}=\frac{1}{6000} \cdot 120=0,02 \mathrm{sec}$.

Q8) Compute the N -point DFTs of the following signal. (8p.)

$$
x(n)=\cos \left(\frac{2 \pi}{N} k_{0} n\right), \quad 0 \leq n \leq N-1
$$

$x(n)=\frac{1}{2} e^{j \frac{2 \pi n}{N} \mathrm{k}_{0}}+\frac{1}{2} \mathrm{e}^{-\mathrm{j} \frac{2 \pi \mathrm{n}}{\mathrm{N}} \mathrm{k}_{0}}=\mathrm{x}_{1}(\mathrm{n})+\mathrm{x}_{2}(\mathrm{n})$
$X_{1}(k)=\sum_{n=0}^{N-1} e^{j \frac{2 \pi n}{N}} k_{0} e^{-j \frac{2 k \pi n}{N}}=\sum_{n=0}^{N-1} e^{j \frac{-2 \pi\left(k-k_{0}\right) n}{N}}$
From this result
$\mathrm{X}(\mathrm{k})=\frac{\mathrm{N}}{2}\left[\delta\left(\mathrm{k}-\mathrm{k}_{0}\right)+\delta\left(\mathrm{k}-\mathrm{N}+\mathrm{k}_{0}\right)\right]$

Q9) The DCT is defined as

$$
\begin{array}{ll}
\theta(k)=\frac{\sqrt{2}}{N} \sum_{n=0}^{N-1} \alpha(k) x(n) \cos \left[\frac{(2 n+1) k \pi}{2 N}\right] & k=0,1, \cdots, N-1 \\
x(n)=\frac{\sqrt{2}}{N} \sum_{n=0}^{N-1} \alpha(k) \theta(k) \cos \left[\frac{(2 n+1) k \pi}{2 N}\right] & k=0,1, \cdots, N-1
\end{array}
$$

where $\alpha(0)=\frac{1}{\sqrt{2}} \quad$ and $\quad \alpha(k)=1 ; \quad \mathrm{k} \neq 0$.
For $\mathrm{N}=2$, calculate the DCT (2p.). What is the identical transform of this result included? (4p.)
$\mathrm{C}^{2}=\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ \cos (\pi / 4) & \cos (3 \pi / 4)\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]=\mathrm{L}^{2}$
The identical transform is Karhunen Loewe transform, $\mathrm{L}^{2}$.

Q10) Consider a stationary source with variance of unity and normalized autocorrelation $\rho$ between neighboring samples

$$
\mathrm{R}_{\mathrm{xx}}=\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]
$$

Find the eigenvalues, eigenvectors and the coefficients of KLT. (10p.)
$\left|\begin{array}{cc}1-\lambda & \rho \\ \rho & 1-\lambda\end{array}\right|=0 \quad \lambda_{0}=1+\rho, \quad \lambda_{1}=1-\rho$
$\left[\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right]\left[\begin{array}{l}\mathrm{I}_{0}(0) \\ \mathrm{I}_{0}(1)\end{array}\right]=(1+\rho)\left[\begin{array}{l}\mathrm{I}_{0}(0) \\ \mathrm{I}_{0}(1)\end{array}\right], \quad \mathrm{I}_{0}(0)=-\mathrm{I}_{0}(1)$
Similarly, for $I_{1}$, find that $I_{1}(0)=-I_{1}(1)$
If we scale the vectors, so that
$\mathrm{I}_{0}^{2}(0)+\mathrm{I}_{0}^{2}(1)=\mathrm{I}_{1}^{2}(0)+\mathrm{I}_{1}^{2}(1)=1$

The above equation show that the product of the eigenvalues $\lambda_{0}$ and $\lambda_{1}$ equals.
$\prod_{i=1}^{\mathrm{N}-1} \lambda_{\mathrm{i}}=\lambda_{0} \lambda_{1}=1-\rho^{2}\left|\mathrm{R}_{\mathrm{xx}}\right| \quad$ and
$R_{\theta \theta}=\left[\begin{array}{cc}\lambda_{0} & 0 \\ 0 & \lambda_{1}\end{array}\right]=\left[\begin{array}{cc}1+\rho & 0 \\ 0 & 1-\rho\end{array}\right], \quad$ hovewer $I_{0}$ and $I_{1}$ are the row of $L$ and for orthogonality, $\mathrm{LL}^{\top}=$.

Therefore
$\mathrm{L}^{2}=\left(\mathrm{L}^{\mathrm{T}}\right)^{2}=\left(\mathrm{L}^{-1}\right)^{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$

Q11) Find the Laplace transform of $f(t)$. ( 6 p.)

$$
\begin{gathered}
f(t)=e^{-2 t} \cos (\sqrt{3})-t^{2} e^{-2 t} \\
F(s)=L\left\{e^{-2 t} \cos (\sqrt{3})-t^{2} e^{-2 t}\right\}=L\left\{e^{-2 t} \cos (\sqrt{3})\right\}-L\left\{t^{2} e^{-2 t}\right\}=\frac{3+2}{(s+2)^{2}+3}-\frac{2}{(s+2)^{3}}
\end{gathered}
$$

Q12) Laplace transforms are useful for solving linear differential equations that arise in many settings. Consider a linearized model of a motor with a torque control system, for example, where the actual torque of the motor relative to a desired torque is described by the following Laplace transform.

$$
H(s)=\frac{\frac{k_{p}}{L}\left(s+\frac{k_{I}}{k_{p}}\right)}{s^{2}+\frac{k_{p}}{L} s+\frac{k_{I}}{L}}
$$

where $\mathrm{L}=1 \mathrm{mH}=$ inductance of motor windings, $\mathrm{k}_{\mathrm{p}}=$ gain for proportional feedback, $\mathrm{k}_{\mathrm{l}}=$ gain for integral feedback. The inverse Laplace transform of $\mathrm{H}(\mathrm{s})$ contains multiplicative factors of the form $\mathrm{e}^{-\mathrm{at}}$ that determine how fast time waveforms decay to zero. This decay corresponds to how rapidly the motor torque reaches a desired value. A faster decay is desirable. Equal roots, (i.e. critical damping), is optimal if vibration (oscillatory solutions) must be eliminated. Find the inverse Laplace transform of $\mathrm{H}(\mathrm{s})$ for the values; $\mathrm{a}=1.6 \mathrm{k}, \mathrm{k}_{\mathrm{l}}=2.56 \mathrm{G}$. (10p.)
$H(s)=\frac{\frac{k_{p}}{L}\left(s+\frac{k_{\mathrm{I}}}{k_{p}}\right)}{s^{2}+\frac{k_{p}}{L} s+\frac{k_{\mathrm{I}}}{L}}=\frac{\frac{a}{2}\left(s+\frac{a}{2}\right)}{(s+a)^{2}}$
We can factor out an s+a fron the top, as follows.
$H(s)=\frac{\frac{a}{2}\left(s+a-\frac{a}{2}\right)}{(s+a)^{2}}=\frac{a}{2}\left(\frac{1}{s+a}-\frac{a}{2} \cdot \frac{1}{(s+a)^{2}}\right)$
The inverse Laplace transform now follows.
$\mathrm{h}(\mathrm{t})=\frac{\mathrm{a}}{2}\left(\mathrm{e}^{-\mathrm{at}}-\frac{\mathrm{a}}{2} \mathrm{te} \mathrm{e}^{-\mathrm{at}}\right)=\frac{\mathrm{a}}{2} \mathrm{e}^{-\mathrm{at}}\left(1-\frac{\mathrm{a}}{2} \mathrm{t}\right)$
Using the value of a, we have the numerical answer.
$h(t)=800 e^{-800 t}(1-800 \mathrm{t})=800 \mathrm{e}^{-\mathrm{t} / 1.25 \mathrm{~ms}}(1-\mathrm{t} / 1.25 \mathrm{~ms})$

Q13) Find the Fourier sine transform of $\mathrm{e}^{-\mathrm{x}}, \mathrm{x} \geq 0$ (2p.). By using this result, show that (3p.)

$$
\int_{0}^{\infty} \frac{\mathrm{x} \sin (\mathrm{mx})}{\mathrm{x}^{2}+1} \mathrm{dx}=\frac{\pi}{2} \mathrm{e}^{-\mathrm{m}}, \quad \mathrm{~m}>0
$$

$\frac{\sqrt{2}}{\pi}\left[\frac{\alpha}{\left(1+\alpha^{2}\right)}\right]$

