FOURIER TRANSFORM

INSTRUCTOR: DR. GÜLDEN KÖKTÜRK

DEU, Electrical and Electronics Eng.

If a signal is not periodic, it is expand with

FOURIER TRANSFORM

$$\int_{-\infty}^{+\infty} |f(t)| dt < \infty$$
 i.e.; absolutely summable

Fourier transform or Fourier integral of a signal f(t)

$$\mathbf{F}(\boldsymbol{\omega}) = \int_{-\infty}^{\infty} \mathbf{f}(\mathbf{t}) \mathbf{e}^{-\mathbf{j}\boldsymbol{\omega}\mathbf{t}} \mathbf{d}\mathbf{t}$$

DEU, Electrical and Electronics Eng.

The inverse Fourier transform is defined as,

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega$$

Mathematical notation of the Fourier transform and the inverse Fourier transform is,

 $\mathcal{F}\{f(t)\}=F(\omega)\qquad \qquad \mathcal{F}^{-1}\{F(\omega)\}=f(t)$

Generally, the Fourier transform is complex. Therefore, it represents a sum of real and imaginary parts.

 $\mathbf{F}(\boldsymbol{\omega}) = \mathbf{R}\mathbf{e}\{\mathbf{F}(\boldsymbol{\omega})\} + \mathbf{j}\mathbf{I}\mathbf{m}\{\mathbf{F}(\boldsymbol{\omega})\} = |\mathbf{F}(\boldsymbol{\omega})|\mathbf{e}^{\mathbf{j}\boldsymbol{\varphi}(\boldsymbol{\omega})}$

Special Forms of the Fourier Transform

 If the signal f(t) is complex, then it can expressed as a sum of the real and imaginary parts of f(t).

 $\mathbf{f}(t) = \mathbf{f}_{Re}(t) + \mathbf{j}\mathbf{f}_{Im}(t)$

With substituting above equation in Fourier integral, we obtain

$$F(\omega) = \int_{-\infty}^{+\infty} f_{Re}(t)e^{-j\omega t}dt + j \int_{-\infty}^{+\infty} f_{Im}(t)e^{-j\omega t}dt$$

From Euler's identity

$$F(\omega) = \int_{-\infty}^{+\infty} [f_{Re}(t)\cos\omega t + f_{Im}(t)\sin\omega t]dt + j\int_{-\infty}^{+\infty} [f_{Re}(t)\sin\omega t - f_{Im}(t)\cos\omega t]dt$$

The real and imaginary parts of $F(\omega)$ are,

$$\begin{split} F_{Re}(\omega) &= \int_{-\infty}^{+\infty} [f_{Re}(t)\cos\omega t + f_{Im}(t)\sin\omega t]dt \\ F_{Im}(\omega) &= -\int_{-\infty}^{+\infty} [f_{Re}(t)\sin\omega t - f_{Im}(t)\cos\omega t]dt \end{split} \\ \end{split}$$
Similarly, the inverse Fourier transform is denoted by

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} [F_{Re}(\omega) + jF_{Im}(\omega)]e^{j\omega t}dt$$

DEU, Electrical and Electronics Eng.

From Euler's identity again

 $f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} [F_{Re}(\omega) \cos\omega t - F_{Im}(\omega) \sin\omega t] dt + \frac{j}{2\pi} \int_{-\infty}^{+\infty} [F_{Re}(\omega) \sin\omega t + F_{Im}(\omega) \cos\omega t] dt$

The real and imaginary parts of the inverse Fourier transform are

$$f_{Re}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} [F_{Re}(\omega) \cos\omega t - F_{Im}(\omega) \sin\omega t] dt$$

$$f_{Im}(t) = \frac{j}{2\pi} \int_{-\infty}^{+\infty} [F_{Re}(\omega) \sin\omega t + F_{Im}(\omega) \cos\omega t] dt$$

DEU, Electrical and Electronics Eng.

• Real time functions; if f(t) is real, that is

$$F_{\text{Re}}(\omega) = \int_{-\infty}^{+\infty} f_{\text{Re}}(t) \cos \omega t \, dt$$
$$F_{\text{Im}}(\omega) = -\int_{-\infty}^{+\infty} f_{\text{Re}}(t) \sin \omega t \, dt$$

$F(\omega)$ is complex. If f_{Re}(t) is even, that is f_{Re}(-t)= f_{Re}(t)

$$F_{Re}(\omega) = 2 \int_{0}^{+\infty} f_{Re}(t) \cos \omega t \, dt$$

$$F_{Im}(\omega) = - \int_{-\infty}^{+\infty} f_{Re}(t) \sin \omega t \, dt = 0$$

$$f_{Re}(t) = even$$

DEU, Electrical and Electronics Eng.

Finally, if f(t) is real and even, $F(\omega)$ is also real and even.

If $f_{Re}(t)$ is odd, that is $-f_{Re}(-t) = f_{Re}(t)$

$$F_{Re}(\omega) = \int_{-\infty}^{\infty} f_{Re}(t) \cos \omega t \, dt = 0$$

$$+\infty$$

$$F_{Im}(\omega) = -2 \int_{-\infty}^{+\infty} f_{Re}(t) \sin \omega t \, dt$$

$$f_{Re}(t) = 0 \, dd$$

Finally, if f(t) is real and odd, F(ω) is imaginary and odd.

Imaginary time functions; if f(t) is imaginary,

$$F_{\text{Re}}(\omega) = \int_{-\infty}^{+\infty} f_{\text{Im}}(t) \sin \omega t \, dt$$

DEU, Electrical and Electronics Eng.

$$F_{\rm Im}(\omega) = \int_{-\infty}^{+\infty} f_{\rm Im}(t) \cos \omega t \, dt$$

$F(\omega)$ is complex. If fim(t) is even, that is fim(-t)= fim(t)

$$F_{Re}(\omega) = \int_{-\infty}^{+\infty} f_{Im}(t) \sin \omega t \, dt = 0$$

$$F_{Im}(\omega) = 2 \int_{0}^{+\infty} f_{Im}(t) \cos \omega t \, dt$$
$$f_{Im}(t) = even$$

Finally, if f(t) is imaginary and even, $F(\omega)$ is also is imaginary and even.

If $f_{Im}(t)$ is odd, that is $-f_{Im}(-t) = f_{Im}(t)$

$$F_{Re}(\omega) = \int_{-\infty}^{+\infty} f_{Im}(t) \sin \omega t \, dt = 2 \int_{0}^{+\infty} f_{Im}(t) \sin \omega t \, dt \\F_{Im}(\omega) = \int_{-\infty}^{+\infty} f_{Im}(t) \cos \omega t \, dt = 0$$

Finally, if f(t) is imaginary and odd, $F(\omega)$ is real and odd.

$$\mathbf{F}(-\boldsymbol{\omega}) = \mathbf{F}^*(\boldsymbol{\omega})$$
 f(t)=Real

DEU, Electrical and Electronics Eng.

Time and Frequency Domain Relationship

f(t)	F(ω)				
	Real	Imaginary	Complex	Even	Odd
Real			\checkmark		
Real and Even	\checkmark			\checkmark	
Real and Odd		\checkmark			\checkmark
Imaginary			\checkmark		
Imaginary and					
Even		\checkmark		\checkmark	
Imaginary and					
Odd	\checkmark				\checkmark

Properties of the Fourier Transform

Linearity; If F1(ω) is the Fourier transform of f1(t), If F2(ω) is the Fourier transform of f2(t), and so on, the linearity of the Fourier transform shows that

 $a_1f_1(t) + a_2f_2(t) + \dots + a_nf_n(t) \Leftrightarrow a_1F_1(\omega) + a_2F_2(\omega) + \dots + a_nF_n(\omega)$

 Symmetry; If F(ω) is the Fourier transform of f(t), the symmetry of the Fourier transform shows that

 $F(t) \Leftrightarrow 2\pi f(-\omega)$

 Time Scaling; If F(ω) is the Fourier transform of f(t) and 'a' is real constant, then

$$f(at) \Leftrightarrow \frac{1}{|a|} F\left(\frac{\omega}{a}\right)$$

DEU, Electrical and Electronics Eng.

• Time Shifting; If $F(\omega)$ is the Fourier transform of f(t), then

 $f(t-t_0) \Leftrightarrow F(\omega) e^{-j\omega t_0}$

 Frequency Shifting; If F(ω) is the Fourier transform of f(t), then

 $e^{j\omega_0 t} f(t) \Leftrightarrow F(\omega {-} \omega_0)$

$$e^{j\omega_0 t} f(at) \Leftrightarrow \frac{1}{|a|} F\left(\frac{\omega - \omega_0}{a}\right)$$
$$f(t) \cos\omega_0 t \Leftrightarrow \frac{F(\omega - \omega_0) + F(\omega + \omega_0)}{2}$$

$$f(t)sin\omega_0t \Leftrightarrow \frac{F(\omega-\omega_0)-F(\omega+\omega_0)}{2j}$$

DEU, Electrical and Electronics Eng.

 Time Differentiation; If F(ω) is the Fourier transform of f(t)

 $\frac{d^nf(t)}{dt^n} \Leftrightarrow (j\omega)^nF(\omega)$

• Frequency Differentiation; If $F(\omega)$ is the Fourier transform of f(t)

$$(-jt)^n f(t) \Leftrightarrow \frac{d^n F(\omega)}{d\omega^n}$$

• Time Integration; If $F(\omega)$ is the Fourier transform of f(t) $\int_{-\infty}^{t} f(\tau) d\tau \Leftrightarrow \frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega)$

DEU, Electrical and Electronics Eng.

 Conjugate Time and Frequency Functions; If F(ω) is the Fourier transform of complex function f(t)

 $f^*(t) \Leftrightarrow F^*(-\omega)$

Time Convolution; If F1(ω) is the Fourier transform of f1(t), If F2(ω) is the Fourier transform of f2(t)

 $f_1(t)*f_2(t) \Leftrightarrow F_1(\omega)\cdot F_2(\omega)$

- Frequency Convolution; If $F_1(\omega)$ is the Fourier transform of f1(t), If $F_2(\omega)$ is the Fourier transform of f2(t), then $f_1(t) \cdot f_2(t) \Leftrightarrow \frac{1}{2\pi} F_1(\omega) * F_2(\omega)$
- Area Under f(t); If F(ω) is the Fourier transform of complex function f(t) F(0) = $\int_{0}^{\infty} f(t)dt$

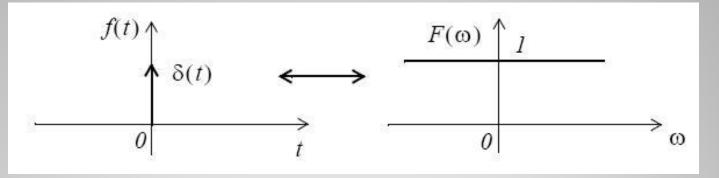
 Area Under F(ω); If F(ω) is the Fourier transform of complex function f(t)

$$\mathbf{f}(\mathbf{0}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{F}(\boldsymbol{\omega}) d\boldsymbol{\omega}$$

• Parseval's Theorem; If $F(\omega)$ is the Fourier transform of complex function f(t), the Parseval's relationship is denoted by $\int_{0}^{\infty} |f(t)|^{2} dt = \frac{1}{2\pi} \int_{0}^{\infty} |F(\omega)|^{2} d\omega$

Fourier Transform of Special Functions

• Delta Function; $\delta(t) \Leftrightarrow 1$

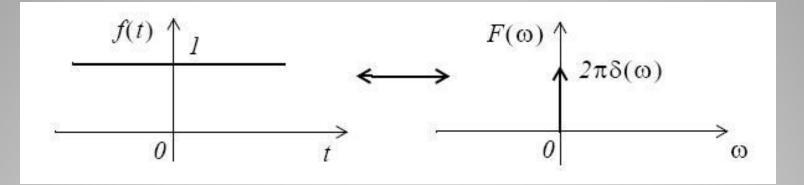


 $\delta(t-t_o) \Leftrightarrow e^{-j\omega t_o}$

Constant Function;

 $A \Leftrightarrow 2A\pi\delta(\omega)$

DEU, Electrical and Electronics Eng.

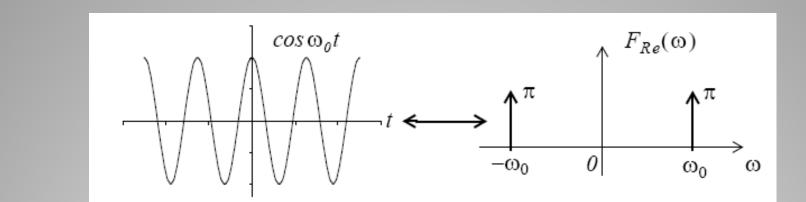


 $e^{j\omega_0 t} \Leftrightarrow 2\pi\delta(\omega{-}\omega_0)$

Cosine Function;

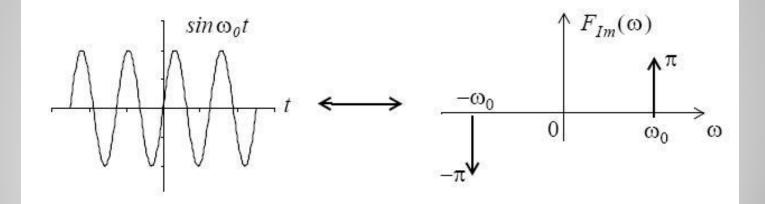
$$\cos\omega_{0}t = \frac{1}{2}(e^{j\omega_{0}t} + e^{-j\omega_{0}t}) \Leftrightarrow \pi\delta(\omega - \omega_{0}) + \pi\delta(\omega + \omega_{0})$$

DEU, Electrical and Electronics Eng.



Sine Function;

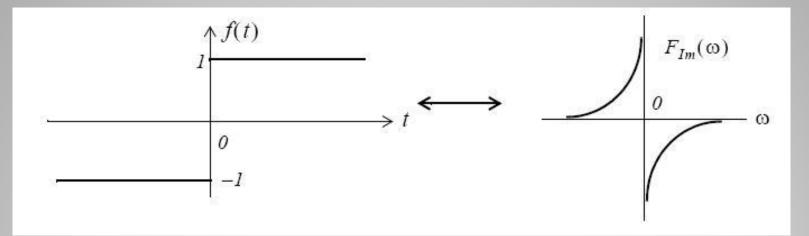
$$\sin \omega_0 t = \frac{1}{2j} (e^{j\omega_0 t} - e^{-j\omega_0 t}) \Leftrightarrow j\pi \delta(\omega - \omega_0) - j\pi \delta(\omega + \omega_0)$$



DEU, Electrical and Electronics Eng.

Signum Function;

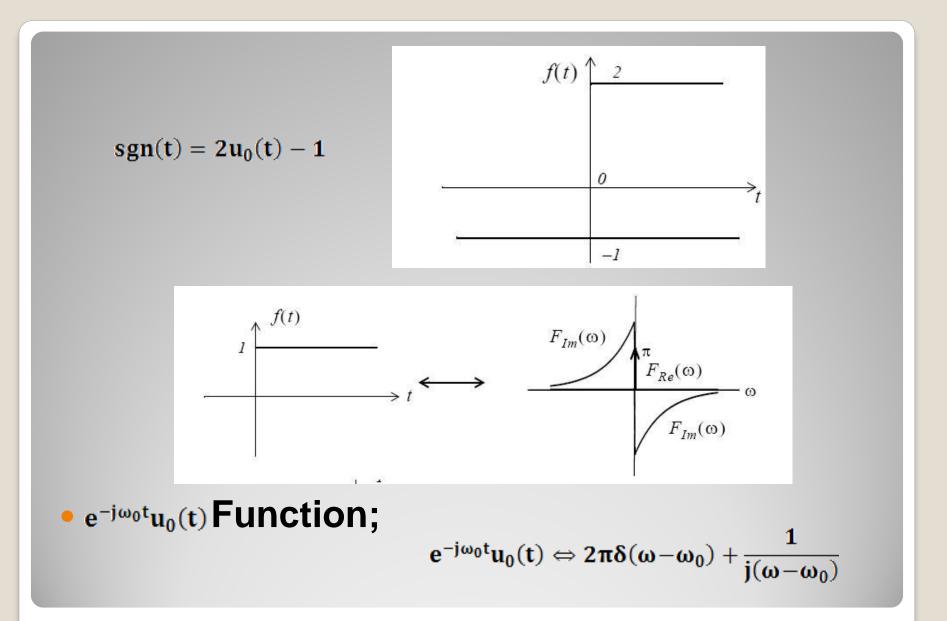
$$sgn(t) = u_0(t) - u_0(-t) \Leftrightarrow \frac{2}{i\omega}$$



Unit Step Function;

$$u_0(t) \Leftrightarrow \pi \delta(\omega) + \frac{1}{j\omega}$$

DEU, Electrical and Electronics Eng.



• $\cos(\omega_0 t)u_0(t)$ Function;

$$\begin{aligned} \cos(\omega_0 t) u_0(t) &\Leftrightarrow \frac{\pi}{2} [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] + \frac{1}{2j(\omega - \omega_0)} + \frac{1}{2j(\omega + \omega_0)} \\ &\Leftrightarrow \frac{\pi}{2} [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] + \frac{j}{\omega_0^2 - \omega^2} \end{aligned}$$

• $sin(\omega_0 t)u_0(t)$ Function;

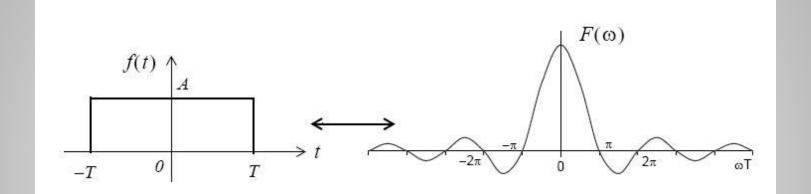
$$\sin(\omega_0 t)u_0(t) \Leftrightarrow \frac{\pi}{2j} [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] + \frac{\omega^2}{\omega_0^2 - \omega^2}$$

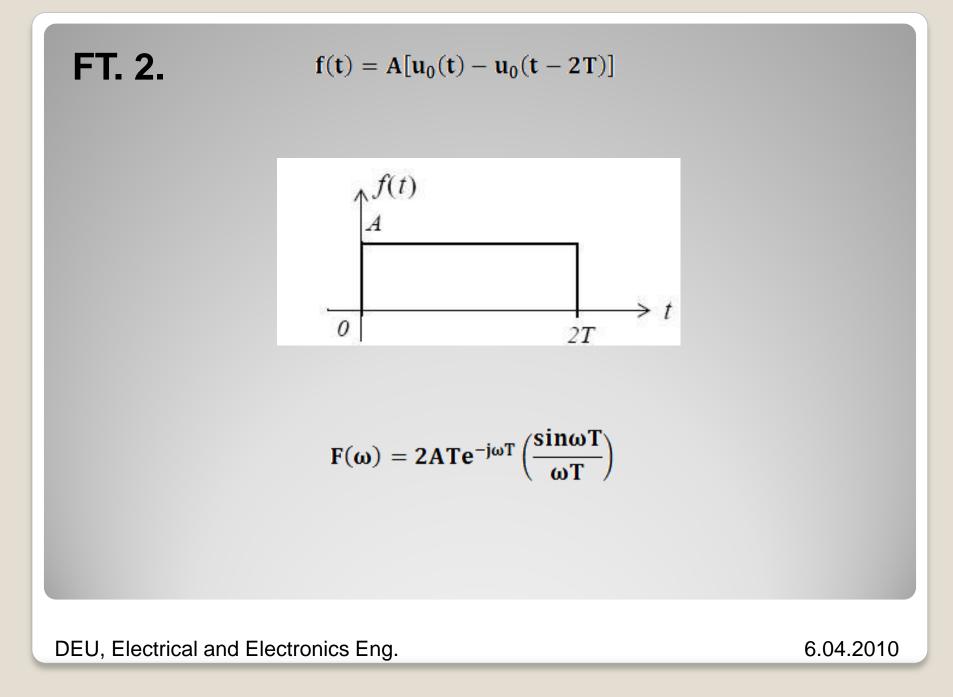
DEU, Electrical and Electronics Eng.

Examples

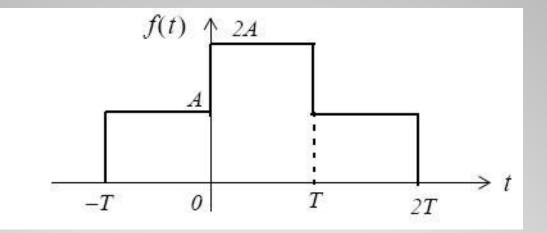
 $f(t) = A[u_0(t+T) - u_0(t-T)] \label{eq:f_stars}$

 $A[u_0(t+T)-u_0(t-T)] \Leftrightarrow 2AT \frac{sin\omega T}{\omega T}$





FT. 3. $f(t) = A[u_0(t+T) + u_0(t) - u_0(t-T) - u_0(t-2T)]$



$$\mathbf{F}(\boldsymbol{\omega}) = 4\mathbf{A}\mathbf{T}\mathbf{e}^{-j\frac{\boldsymbol{\omega}\mathbf{T}}{2}}\mathbf{cos}\left(\frac{\boldsymbol{\omega}\mathbf{T}}{2}\right)\left(\frac{\mathbf{sin}\boldsymbol{\omega}\mathbf{T}}{\boldsymbol{\omega}\mathbf{T}}\right)$$

DEU, Electrical and Electronics Eng.

FT. 4.

$$\mathbf{f}(t) = \mathbf{A}\mathbf{cos}(\omega_0 t) [\mathbf{u}_0(t+T) - \mathbf{u}_0(t-T)]$$

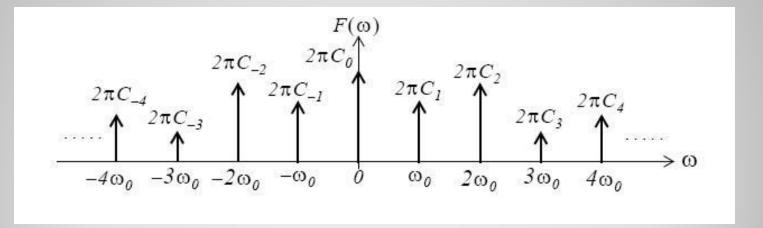
$$\mathbf{F}(\boldsymbol{\omega}) = \mathbf{A}\mathbf{T}\left[\frac{\sin(\boldsymbol{\omega}-\boldsymbol{\omega}_0)\mathbf{T}}{(\boldsymbol{\omega}-\boldsymbol{\omega}_0)\mathbf{T}} + \frac{\sin(\boldsymbol{\omega}+\boldsymbol{\omega}_0)\mathbf{T}}{(\boldsymbol{\omega}+\boldsymbol{\omega}_0)\mathbf{T}}\right]$$

DEU, Electrical and Electronics Eng.

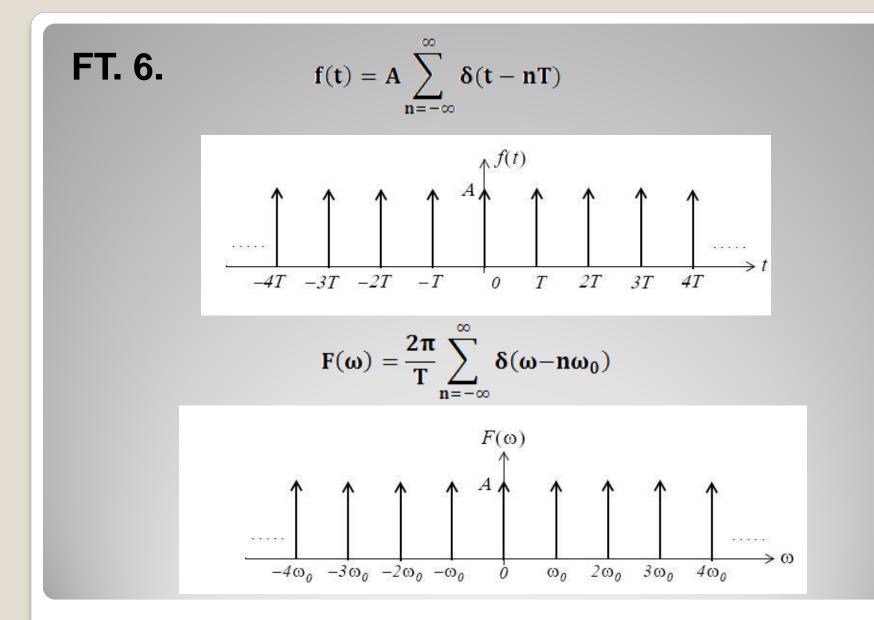
FT. 5.

 $f(t) = \sum_{n=-\infty}^{\infty} C_n e^{jn\omega_0 t}$

$$F(\omega) = 2\pi \sum_{n=-\infty}^{\infty} C_n \, \delta(\omega - \omega_0)$$

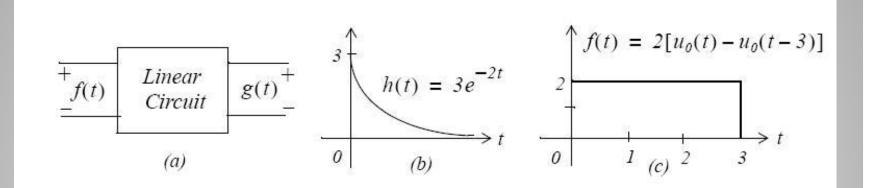


DEU, Electrical and Electronics Eng.



DEU, Electrical and Electronics Eng.

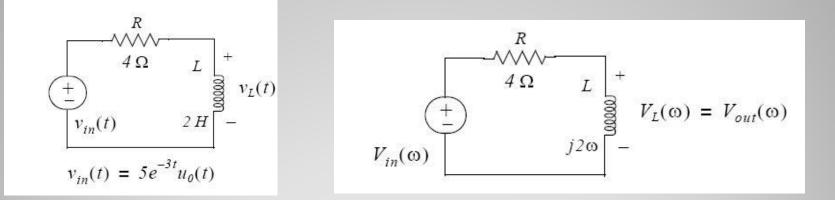
FT. 7. Use the Fourier transform method to compute the response g(t) when the input f(t) is as shown below.



 $g(t) = 1.5 \big\{ (1-e^{-2t}) u_0(t) - \big[1-e^{-2(t-3)} \big] u_0(t-3) \big\}$

DEU, Electrical and Electronics Eng.

FT. 8. For the curcuit in below, use the Fourier transform method, and the system function $H(\omega)$ to compute v_L(t). Assume that i_L(0-).



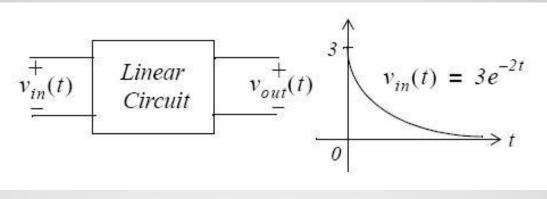
 $v_L(t) = 5(3e^{-3t} - 2e^{-2t})u_0(t)$

DEU, Electrical and Electronics Eng.

FT. 9. For the linear network given below, the input-output relationship is

$$\frac{dv_{out}(t)}{dt} + 4v_{out}(t) = 10v_{in}(t)$$

Use the Fourier transform method, and the system function $H(\omega)$ to compute the output $V_{out}(t)$.



DEU, Electrical and Electronics Eng.

FT. 10. The voltage across an 1 Ω resistor is known to be

 $v_{R}(t) = 3e^{-2t}u_{o}(t)$

Compute the energy dissipated in this resistor for $0 < t < \infty$, and verify the result by application of Parseval's theorem.