
FOURIER TRANSFORM

INSTRUCTOR: DR. GÜLDEN KÖKTÜRK

DEU, Electrical and Electronics Eng. 6.04.2010



If a signal is not periodic, it is expand with

FOURIER TRANSFORM

i.e.; absolutely summable

Fourier transform or Fourier integral of a signal

f(t)
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The inverse Fourier transform is defined as,

Mathematical notation of the Fourier transform

and the inverse Fourier transform is,

Generally, the Fourier transform is complex.

Therefore, it represents a sum of real and

imaginary parts.
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Special Forms of the Fourier Transform

 If the signal f(t) is complex, then it can

expressed as a sum of the real and imaginary

parts of f(t).

With substituting above equation in Fourier

integral, we obtain

From Euler’s identity
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The real and imaginary parts of F(ω) are,

Similarly, the inverse Fourier transform is denoted

by
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From Euler’s identity again

The real and imaginary parts of the inverse

Fourier transform are
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 Real time functions; if f(t) is real, that is

F(ω) is complex.

If fRe(t) is even, that is fRe(-t)= fRe(t)
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Finally, if f(t) is real and even, F(ω) is also real 

and even.

If fRe(t) is odd, that is -fRe(-t)= fRe(t)

Finally, if f(t) is real and odd, F(ω) is imaginary 

and odd.

Imaginary time functions; if f(t) is imaginary,
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F(ω) is complex.

If fIm(t) is even, that is fIm(-t)= fIm(t)

Finally, if f(t) is imaginary and even, F(ω) is

also is imaginary and even.
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If fIm(t) is odd, that is -fIm(-t)= fIm(t)

Finally, if f(t) is imaginary and odd, F(ω) is real

and odd.

f(t)=Real
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Time and Frequency Domain Relationship
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f(t) F(ω)

Real Imaginary Complex Even Odd

Real 

Real and Even  

Real and Odd  

Imaginary 

Imaginary and 

Even  

Imaginary and 

Odd  
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Properties of the Fourier Transform

 Linearity; If F1(ω) is the Fourier transform of f1(t), If

F2(ω) is the Fourier transform of f2(t), and so on, the

linearity of the Fourier transform shows that

 Symmetry; If F(ω) is the Fourier transform of f(t), the

symmetry of the Fourier transform shows that

 Time Scaling; If F(ω) is the Fourier transform of f(t)

and ‘a’ is real constant, then



 Time Shifting; If F(ω) is the Fourier transform

of f(t), then

 Frequency Shifting; If F(ω) is the Fourier

transform of f(t), then
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 Time Differentiation; If F(ω) is the Fourier

transform of f(t)

 Frequency Differentiation; If F(ω) is the

Fourier transform of f(t)

 Time Integration; If F(ω) is the Fourier

transform of f(t)
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 Conjugate Time and Frequency Functions; If F(ω) is

the Fourier transform of complex function f(t)

 Time Convolution; If F1(ω) is the Fourier transform of

f1(t), If F2(ω) is the Fourier transform of f2(t)

 Frequency Convolution; If F1(ω) is the Fourier

transform of f1(t), If F2(ω) is the Fourier transform of f2(t),

then

 Area Under f(t); If F(ω) is the Fourier transform of

complex function f(t)
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 Area Under F(ω); If F(ω) is the Fourier

transform of complex function f(t)

 Parseval’s Theorem; If F(ω) is the Fourier

transform of complex function f(t), the Parseval’s

relationship is denoted by

DEU, Electrical and Electronics Eng. 6.04.2010



Fourier Transform of Special Functions

 Delta Function;

 Constant Function;
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 Cosine Function;
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 Sine Function;
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 Signum Function;

 Unit Step Function;
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 Function;

DEU, Electrical and Electronics Eng. 6.04.2010



DEU, Electrical and Electronics Eng. 6.04.2010

 Function;

 Function;



Examples

FT. 1.
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FT. 2. 
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FT. 3. 
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FT. 4. 
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FT. 5. 
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FT. 6. 

DEU, Electrical and Electronics Eng. 6.04.2010



FT. 7. Use the Fourier transform method to

compute the response g(t) when the input f(t) is

as shown below.
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FT. 8. For the curcuit in below, use the Fourier

transform method, and the system function H(ω)

to compute vL(t). Assume that iL(0-).
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FT. 9. For the linear network given below, the

input-output relationship is

Use the Fourier transform method, and the

system function H(ω) to compute the output

vout(t).
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FT. 10. The voltage across an 1 Ω resistor is

known to be

Compute the energy dissipated in this resistor for

0<t< , and verify the result by application of

Parseval’s theorem.

DEU, Electrical and Electronics Eng. 6.04.2010


