## FOURIER TRANSFORM

INSTRUCTOR: DR. GÜLDEN KÖKTÜRK


If a signal is not periodic, it is expand with

## FOURIER TRANSFORM

$$
\int_{-\infty}^{+\infty}|\mathbf{f}(\mathbf{t})| \mathrm{dt}<\infty
$$

i.e.; absolutely summable

Fourier transform or Fourier integral of a signal $f(t)$

$$
\mathbf{F}(\omega)=\int_{-\infty}^{+\infty} \mathbf{f}(\mathbf{t}) \mathbf{e}^{-\mathbf{j} \omega t} \mathbf{d t}
$$

The inverse Fourier transform is defined as,

$$
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F(\omega) e^{j \omega t} d \omega
$$

Mathematical notation of the Fourier transform and the inverse Fourier transform is,

$$
\mathcal{F}\{\mathrm{f}(\mathrm{t})\}=\mathbf{F}(\boldsymbol{\omega}) \quad \mathcal{F}^{-1}\{\mathbf{F}(\boldsymbol{\omega})\}=\mathbf{f}(\mathbf{t})
$$

Generally, the Fourier transform is complex. Therefore, it represents a sum of real and imaginary parts.

$$
\mathbf{F}(\boldsymbol{\omega})=\operatorname{Re}\{\mathbf{F}(\boldsymbol{\omega})\}+\mathbf{j} \mathbf{I m}\{\mathbf{F}(\boldsymbol{\omega})\}=|\mathbf{F}(\boldsymbol{\omega})| \mathbf{e}^{\mathbf{j} \boldsymbol{\varphi}(\boldsymbol{\omega})}
$$

## Special Forms of the Fourier Transform

If the signal $f(t)$ is complex, then it can expressed as a sum of the real and imaginary parts of $f(t)$.

$$
\mathbf{f}(\mathbf{t})=\mathbf{f}_{\mathrm{Re}}(\mathbf{t})+\mathbf{j} \mathbf{f}_{\mathrm{Im}}(\mathbf{t})
$$

With substituting above equation in Fourier integral, we obtain

$$
F(\omega)=\int_{-\infty}^{+\infty} f_{R e}(t) e^{-j \omega t} d t+j \int_{-\infty}^{+\infty} f_{I m}(t) e^{-j \omega t} d t
$$

From Euler's identity

$$
\mathrm{F}(\omega)=\int_{-\infty}^{+\infty}\left[\mathrm{f}_{\mathrm{Re}}(\mathrm{t}) \cos \omega \mathrm{t}+\mathrm{f}_{\mathrm{Im}}(\mathrm{t}) \sin \omega \mathrm{t}\right] \mathrm{dt}+\mathrm{j} \int_{-\infty}^{+\infty}\left[\mathrm{f}_{\mathrm{Re}}(\mathrm{t}) \sin \omega \mathrm{t}-\mathrm{f}_{\mathrm{Im}}(\mathrm{t}) \cos \omega \mathrm{t}\right] \mathrm{dt}
$$

The real and imaginary parts of $F(\omega)$ are,

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Re}}(\omega)=\int_{-\infty}^{+\infty}\left[\mathrm{f}_{\mathrm{Re}}(\mathrm{t}) \cos \omega \mathrm{t}+\mathrm{f}_{\mathrm{Im}}(\mathrm{t}) \sin \omega \mathrm{t}\right] \mathrm{dt} \\
& \mathrm{~F}_{\mathrm{Im}}(\omega)=-\int_{-\infty}^{+\infty}\left[\mathrm{f}_{\mathrm{Re}}(\mathrm{t}) \sin \omega \mathrm{t}-\mathrm{f}_{\mathrm{Im}}(\mathrm{t}) \cos \omega \mathrm{t}\right] \mathrm{dt}
\end{aligned}
$$

Similarly, the inverse Fourier transform is denoted by

$$
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left[F_{\mathrm{Re}}(\omega)+j \mathrm{~F}_{\mathrm{Im}}(\omega)\right] \mathrm{e}^{\mathrm{j} \omega \mathrm{t}} d t
$$

## From Euler's identity again

$f(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left[F_{R e}(\omega) \cos \omega t-F_{\text {Im }}(\omega) \sin \omega t\right] d t+\frac{j}{2 \pi} \int_{-\infty}^{+\infty}\left[F_{R e}(\omega) \sin \omega t+F_{\text {Im }}(\omega) \cos \omega t\right] d t$
The real and imaginary parts of the inverse Fourier transform are

$$
\begin{aligned}
& f_{\mathrm{Re}}(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left[F_{\mathrm{Re}}(\omega) \cos \omega t-F_{\mathrm{Im}}(\omega) \sin \omega t\right] d t \\
& f_{\mathrm{Im}}(t)=\frac{\mathbf{j}}{2 \pi} \int_{-\infty}^{+\infty}\left[\mathrm{F}_{\mathrm{Re}}(\omega) \sin \omega t+\mathrm{F}_{\mathrm{Im}}(\omega) \cos \omega t\right] d t
\end{aligned}
$$

## Real time functions; if $f(t)$ is real, that is

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Re}}(\omega)=\int_{-\infty}^{+\infty} \mathrm{f}_{\mathrm{Re}}(\mathrm{t}) \cos \omega \mathrm{tdt} \\
& \mathrm{~F}_{\mathrm{Im}}(\omega)=-\int_{-\infty}^{+\infty} \mathrm{f}_{\mathrm{Re}}(\mathrm{t}) \sin \omega \mathrm{tdt}
\end{aligned}
$$

$F(\omega)$ is complex. If $f r e(t)$ is even, that is $f_{\text {Ree }}(-t)=f_{\text {Re }}(t)$

$$
\left.\begin{array}{c}
F_{\mathrm{Re}}(\omega)=2 \int_{0}^{+\infty} f_{\mathrm{Re}}(t) \cos \omega t d t \\
\mathrm{~F}_{\mathrm{Im}}(\omega)=-\int_{-\infty}^{+\infty} \mathbf{f}_{\mathrm{Re}}(t) \sin \omega t d t=0
\end{array}\right\} \quad f_{\mathrm{Re}}(t)=\text { even }
$$

Finally, if $f(t)$ is real and even, $F(\omega)$ is also real and even.
If fre $(t)$ is odd, that is $-f$ fre $(-t)=f R e(t)$

$$
\left.\begin{array}{l}
\mathrm{F}_{\mathrm{Re}}(\omega)=\int_{-\infty}^{+\infty} \mathrm{f}_{\mathrm{Re}}(\mathrm{t}) \cos \omega \mathrm{tdt}=0 \\
\mathrm{~F}_{\mathrm{Im}}(\omega)=-2 \int_{0}^{+\infty} \mathrm{f}_{\mathrm{Re}}(\mathrm{t}) \sin \omega t d t
\end{array}\right\} \quad \mathrm{f}_{\mathrm{Re}}(\mathrm{t})=\mathrm{odd}
$$

Finally, if $f(t)$ is real and odd, $F(\omega)$ is imaginary and odd.
-Imaginary time functions; if $f(t)$ is imaginary,

$$
\mathrm{F}_{\mathrm{Re}}(\omega)=\int_{-\infty}^{+\infty} \mathrm{f}_{\mathrm{Im}}(\mathrm{t}) \sin \omega \mathrm{tdt}
$$

$$
\mathrm{F}_{\mathrm{Im}}(\omega)=\int_{-\infty}^{+\infty} \mathrm{f}_{\mathrm{Im}}(\mathrm{t}) \cos \omega \mathrm{tdt}
$$

$F(\omega)$ is complex.
If $f \operatorname{lm}(t)$ is even, that is $f \operatorname{lm}(-t)=f \operatorname{lm}(t)$

$$
\left.\begin{array}{l}
\mathrm{F}_{\mathrm{Re}}(\omega)=\int_{-\infty}^{+\infty} \mathrm{f}_{\mathrm{Im}}(t) \sin \omega t \mathrm{dt}=0 \\
\mathrm{~F}_{\mathrm{Im}}(\omega)=2 \int_{0}^{+\infty} f_{\mathrm{Im}}(t) \cos \omega t d t
\end{array}\right\} \quad f_{\mathrm{Im}}(t)=\text { even }
$$

Finally, if $f(t)$ is imaginary and even, $F(\omega)$ is also is imaginary and even.

If $f \operatorname{lm}(t)$ is odd, that is $-f \operatorname{lm}(-t)=f \operatorname{lm}(t)$

$$
\begin{gathered}
\left.\mathrm{F}_{\mathrm{Re}}(\omega)=\int_{-\infty}^{+\infty} \mathrm{f}_{\mathrm{Im}(\mathrm{t}) \sin \omega t \mathrm{dt}=2 \int_{0}^{+\infty} \mathrm{f}_{\mathrm{Im}}(\mathrm{t}) \sin \omega \mathrm{tdt}}^{\mathrm{F}_{\mathrm{Im}}(\omega)=\int_{-\infty}^{+\infty} \mathrm{f}_{\mathrm{Im}}(\mathrm{t}) \cos \omega t d t=0}\right\} \quad \mathrm{f}_{\mathrm{Im}(\mathrm{t}}(\mathrm{t})=\text { odd }
\end{gathered}
$$

Finally, if $f(t)$ is imaginary and odd, $F(\omega)$ is real and odd.

$$
\mathbf{F}(-\boldsymbol{\omega})=\mathbf{F}^{*}(\boldsymbol{\omega}) \quad f(\mathrm{t})=\text { Real }
$$

## Time and Frequency Domain Relationship

| $\mathbf{f}(\mathbf{t})$ |  | F( $\omega$ ) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Real | Imaginary | Complex | Even | Odd |
| Real |  |  | $\checkmark$ |  |  |
| Real and Even | $\checkmark$ |  |  | $\checkmark$ |  |
| Real and Odd |  | $\checkmark$ |  |  | $\checkmark$ |
| Imaginary |  |  | $\checkmark$ |  |  |
| Imaginary and <br> Even |  | $\checkmark$ |  | $\checkmark$ |  |
| Imaginary and <br> Odd | $\checkmark$ |  |  |  |  |

## Properties of the Fourier Transform

Linearity; If $\mathrm{F}_{1}(\omega)$ is the Fourier transform of $\mathrm{f}_{1}(\mathrm{t})$, If $\mathrm{F}_{2}(\omega)$ is the Fourier transform of $\mathrm{f}_{2}(\mathrm{t})$, and so on, the linearity of the Fourier transform shows that

$$
\mathbf{a}_{1} f_{1}(t)+a_{2} f_{2}(t)+\cdots+a_{n} f_{n}(t) \Leftrightarrow a_{1} F_{1}(\omega)+a_{2} F_{2}(\omega)+\cdots+a_{n} F_{n}(\omega)
$$

Symmetry; If $F(\omega)$ is the Fourier transform of $f(t)$, the symmetry of the Fourier transform shows that

$$
F(t) \Leftrightarrow 2 \pi f(-\omega)
$$

Time Scaling; If $F(\omega)$ is the Fourier transform of $f(t)$ and ' $a$ ' is real constant, then

$$
\mathbf{f}(\mathrm{at}) \Leftrightarrow \frac{1}{|\mathbf{a}|} \mathbf{F}\left(\frac{\omega}{\mathbf{a}}\right)
$$

Time Shifting; If $F(\omega)$ is the Fourier transform of $f(t)$, then

$$
\mathbf{f}\left(\mathbf{t}-\mathbf{t}_{0}\right) \Leftrightarrow \mathbf{F}(\omega) \mathrm{e}^{-\mathrm{j} \omega \mathrm{t}_{0}}
$$

Frequency Shifting; If $F(\omega)$ is the Fourier transform of $f(t)$, then

$$
\begin{aligned}
\mathbf{e}^{j \omega_{0} t} \mathbf{f}(\mathbf{t}) & \Leftrightarrow \mathbf{F}\left(\omega-\omega_{0}\right) \\
\mathbf{e}^{\mathbf{j} \omega_{0} t} \mathbf{f}(\mathbf{a t}) & \Leftrightarrow \frac{\mathbf{1}}{|\mathbf{a}|} \mathbf{F}\left(\frac{\omega-\omega_{0}}{\mathbf{a}}\right) \\
\mathbf{f}(\mathbf{t}) \cos \omega_{0} \mathbf{t} & \Leftrightarrow \frac{\mathbf{F}\left(\omega-\omega_{0}\right)+\mathbf{F}\left(\omega+\omega_{0}\right)}{2} \\
\mathbf{f}(\mathbf{t}) \sin \omega_{0} \mathbf{t} & \Leftrightarrow \frac{\mathbf{F}\left(\omega-\omega_{0}\right)-\mathbf{F}\left(\omega+\omega_{0}\right)}{2 \mathbf{j}}
\end{aligned}
$$

## Time Differentiation; If $F(\omega)$ is the Fourier

 transform of $\mathrm{f}(\mathrm{t})$$$
\frac{d^{n^{n}}(t)}{d t^{n}} \Leftrightarrow(j \omega)^{n} F(\omega)
$$

Frequency Differentiation; If $F(\omega)$ is the Fourier transform of $f(t)$

$$
(-j t)^{n} f(t) \Leftrightarrow \frac{d^{n} F(\omega)}{d \omega^{n}}
$$

Time Integration; If $F(\omega)$ is the Fourier transform of $f(\mathrm{t})$

$$
\int_{-\infty}^{\mathrm{t}} \mathrm{f}(\tau) \mathrm{d} \tau \Leftrightarrow \frac{\mathrm{~F}(\omega)}{\mathrm{j} \omega}+\pi \mathrm{F}(0) \delta(\omega)
$$

## Conjugate Time and Frequency Functions; If $F(\omega)$ is

 the Fourier transform of complex function $f(t)$$$
\mathbf{f}^{*}(\mathbf{t}) \Leftrightarrow \mathbf{F}^{*}(-\boldsymbol{\omega})
$$

Time Convolution; If $\mathrm{F}_{1}(\omega)$ is the Fourier transform of $f_{1}(t)$, If $F_{2}(\omega)$ is the Fourier transform of $f_{2}(t)$

$$
\mathbf{f}_{1}(\mathbf{t}) * \mathrm{f}_{2}(\mathrm{t}) \Leftrightarrow \mathrm{F}_{1}(\omega) \cdot \mathrm{F}_{2}(\omega)
$$

Frequency Convolution; If $\mathrm{F}_{1}(\omega)$ is the Fourier transform of $\mathrm{f}_{1}(\mathrm{t})$, If $\mathrm{F}_{2}(\omega)$ is the Fourier transform of $\mathrm{f}_{2}(\mathrm{t})$, then

$$
f_{1}(t) \cdot f_{2}(t) \Leftrightarrow \frac{1}{2 \pi} F_{1}(\omega) * F_{2}(\omega)
$$

Area Under $f(t)$; If $F(\omega)$ is the Fourier transform of complex function $f(t)$

$$
\mathbf{F}(\mathbf{0})=\int_{-\infty}^{\infty} \mathbf{f}(\mathbf{t}) \mathbf{d t}
$$

## Area Under $F(\omega)$; If $F(\omega)$ is the Fourier

 transform of complex function $f(t)$$$
f(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) d \omega
$$

Parseval's Theorem; If $F(\omega)$ is the Fourier transform of complex function $f(\mathrm{t})$, the Parseval's relationship is denoted by

$$
\int_{-\infty}^{\infty}|f(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|F(\omega)|^{2} d \omega
$$

## Fourier Transform of Special Functions

## Delta Function;

$$
\delta(t) \Leftrightarrow 1
$$




$$
\boldsymbol{\delta}\left(\mathbf{t}-\mathbf{t}_{\mathbf{0}}\right) \Leftrightarrow \mathbf{e}^{-\mathbf{j} \omega \mathrm{t}_{0}}
$$

## Constant Function;

$$
A \Leftrightarrow 2 A \pi \delta(\omega)
$$



$$
\mathbf{e}^{\mathrm{j} \omega_{0} \mathrm{t}} \Leftrightarrow 2 \pi \delta\left(\omega-\omega_{0}\right)
$$

## Cosine Function;

$$
\cos \omega_{0} t=\frac{1}{2}\left(\mathbf{e}^{\mathbf{j} \omega_{0} t}+\mathrm{e}^{-\mathrm{j} \omega_{0} \mathrm{t}}\right) \Leftrightarrow \pi \delta\left(\omega-\omega_{0}\right)+\pi \delta\left(\omega+\omega_{0}\right)
$$



## Sine Function;

$$
\sin \omega_{0} t=\frac{1}{2 \mathbf{j}}\left(\mathbf{e}^{\mathbf{j} \omega_{0} t}-\mathbf{e}^{-\mathbf{j} \omega_{0} t}\right) \Leftrightarrow \mathbf{j} \pi \delta\left(\omega-\omega_{0}\right)-\mathbf{j} \pi \delta\left(\omega+\omega_{0}\right)
$$




## Signum Function;

$$
\operatorname{sgn}(t)=u_{0}(t)-u_{0}(-t) \Leftrightarrow \frac{2}{j \omega}
$$




## - Unit Step Function;

$$
\mathbf{u}_{0}(\mathrm{t}) \Leftrightarrow \pi \delta(\omega)+\frac{1}{\mathbf{j} \omega}
$$

$$
\operatorname{sgn}(t)=2 u_{0}(t)-1
$$





- $\mathrm{e}^{-\mathrm{j} \omega_{0} \mathrm{t}} \mathbf{u}_{0}(\mathrm{t})$ Function;

$$
\mathbf{e}^{-\mathbf{j} \omega_{0} t} \mathbf{u}_{0}(\mathbf{t}) \Leftrightarrow 2 \pi \delta\left(\omega-\omega_{0}\right)+\frac{1}{j\left(\omega-\omega_{0}\right)}
$$

## $\cos \left(\omega_{0} t\right) u_{0}(t)$ Function;

$$
\begin{aligned}
\cos \left(\omega_{0} t\right) u_{0}(t) & \Leftrightarrow \frac{\pi}{2}\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]+\frac{1}{2 j\left(\omega-\omega_{0}\right)}+\frac{1}{2 j\left(\omega+\omega_{0}\right)} \\
& \Leftrightarrow \frac{\pi}{2}\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]+\frac{j}{\omega_{0}^{2}-\omega^{2}}
\end{aligned}
$$

$\sin \left(\omega_{0} t\right) u_{0}(t)$ Function;

$$
\sin \left(\omega_{0} t\right) u_{0}(t) \Leftrightarrow \frac{\pi}{2 j}\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]+\frac{\omega^{2}}{\omega_{0}^{2}-\omega^{2}}
$$

## Examples

FT. 1.

$$
\begin{gathered}
f(t)=A\left[u_{0}(t+T)-u_{0}(t-T)\right] \\
A\left[u_{0}(t+T)-u_{0}(t-T)\right] \Leftrightarrow 2 A T \frac{\sin \omega T}{\omega T}
\end{gathered}
$$



## FT. 2. <br> $$
\mathbf{f}(\mathrm{t})=\mathbf{A}\left[\mathbf{u}_{0}(\mathrm{t})-\mathbf{u}_{0}(\mathrm{t}-2 \mathrm{~T})\right]
$$



$$
\mathrm{F}(\omega)=2 \mathrm{ATe}^{-\mathrm{j} \omega \mathrm{~T}}\left(\frac{\sin \omega \mathrm{~T}}{\omega \mathrm{~T}}\right)
$$

FT. 3. $f(t)=A\left[u_{0}(t+T)+u_{0}(t)-u_{0}(t-T)-u_{0}(t-2 T)\right]$


$$
F(\omega)=4 A T e^{-j \frac{\omega T}{2}} \cos \left(\frac{\omega T}{2}\right)\left(\frac{\sin \omega T}{\omega T}\right)
$$

FT. 4.

$$
\mathbf{f}(\mathbf{t})=\mathbf{A} \cos \left(\omega_{0} \mathbf{t}\right)\left[\mathbf{u}_{0}(\mathbf{t}+\mathbf{T})-\mathbf{u}_{0}(\mathbf{t}-\mathbf{T})\right]
$$

$$
F(\omega)=A T\left[\frac{\sin \left(\omega-\omega_{0}\right) T}{\left(\omega-\omega_{0}\right) T}+\frac{\sin \left(\omega+\omega_{0}\right) T}{\left(\omega+\omega_{0}\right) T}\right]
$$

## FT. 5.

$$
\mathbf{f}(\mathbf{t})=\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{C}_{\mathrm{n}} \mathbf{e}^{j n \omega_{0} t}
$$

$$
F(\omega)=2 \pi \sum_{n=-\infty}^{\infty} C_{n} \delta\left(\omega-\omega_{0}\right)
$$



$$
\text { FT. 6. } f(t)=A \sum_{n=-\infty}^{\infty} \delta(t-n T)
$$



$$
F(\omega)=\frac{2 \pi}{T} \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \omega_{0}\right)
$$



## FT. 7. Use the Fourier transform method to

 compute the response $g(t)$ when the input $f(t)$ is as shown below.

$$
g(t)=1.5\left\{\left(1-\mathbf{e}^{-2 t}\right) \mathbf{u}_{0}(t)-\left[1-\mathbf{e}^{-2(t-3)}\right] \mathbf{u}_{0}(\mathbf{t}-3)\right\}
$$

## FT. 8. For the curcuit in below, use the Fourier

 transform method, and the system function $H(\omega)$ to compute $\mathrm{vL}(\mathrm{t})$. Assume that $\mathrm{i}\left(\mathrm{O}_{-}\right)$.

$$
v_{L}(t)=5\left(3 e^{-3 t}-2 e^{-2 t}\right) u_{0}(t)
$$

FT. 9. For the linear network given below, the input-output relationship is

$$
\frac{d v_{\text {out }}(t)}{d t}+4 v_{\text {out }}(t)=10 v_{\text {in }}(t)
$$

Use the Fourier transform method, and the system function $H(\omega)$ to compute the output $\operatorname{Vout}(\mathrm{t})$.


FT. 10. The voltage across an $1 \Omega$ resistor is known to be

$$
v_{R}(t)=3 e^{-2 t} u_{0}(t)
$$

Compute the energy dissipated in this resistor for $0<t<\infty$, and verify the result by application of Parseval's theorem.

