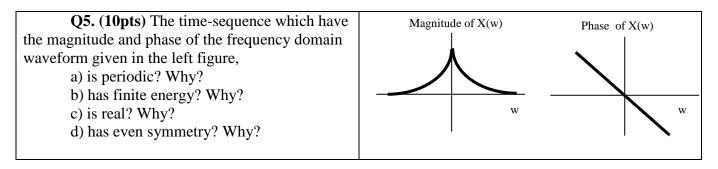

No	1	2	3	4	5	6	Т
Name							

EE 224 Year Exam

Q1) (25pts) Express the sinusoidal signal shown to below as a Fourier series in complex exponential form.


Q2) (15pts) Find the Fourier transform of the unit step function, u(t).

Q3) (10pts) The Fourier transform a linear operation; that is, for any function f(x) and g(x) whose Fourier transforms exist and any constant a and b, F[af(x)+bg(x)]=aF[f(x)]+b[g(x)]. Prove it.

Q4) (**25pts**) Consider a discrete-time LTI system with impulse response $h[n] = e^{j\omega_c n}$. What will be the output of system y[n] to the given input $x[n] = \delta(n)$ in frequency domain? Plot input, impulse response and output in frequency domain.

Time Domain x[n]	Frequency Domain X(ω)			
$\delta[n]$	1			
<i>u</i> [<i>n</i>]	$\frac{1}{1 - e^{-j\omega}}$			
e ^{jn}	$2\pi\delta(\omega)$			
$\frac{\sin(n\omega_0)}{\pi n}$ $0 < \omega_0 < \pi$	$\begin{cases} 1 & 0 \le \omega \le \omega_0 \\ 0 & \omega_0 < \omega \le \pi \end{cases}$			

Q6. (15pts) a) Why frequency analysis is used? What is the advantage?

b) What is FFT? Why it is used?

c) Why the number of data should the power of 2 for using FFT?